NTV.documentation.user_guide
@author: philippe@loco-labs.io
JSON-NTV (named and typed value)
: a semantic format for interoperability
JSON-NTV is a universal representation format. It allows the sharing and conversion of any type of data.
The NTV format is part of the Environmental Sensing Project
For more information, see the user guide or the github repository.
What is NTV ?
The semantic level of shared JSON (or CSV) data (e.g. Open Data) remains low, which makes automated reuse difficult.
JSON-NTV proposes to enrich it to obtain a real interoperable exchange format.
NTV format
The NTV format consists of representing data by three attributes: a name, a type and a value. This representation is common in programming languages (for example a variable with Python typing is defined by age: int = 25
), however the JSON format represents data with only a value or a key:value pair.
The JSON-NTV extension consists of including the type in the name to associate it with a value (for example {'age:int': 25}
is the JSON representation of the NTV triplet ('age', 'int' , 25 ) ).
This approach makes it possible to reversibly represent any simple or complex data by a JSON structure (high interoperability).
Examples
In [1]: from shapely.geometry import Point
from datetime import date
from pprint import pprint
In [2]: pprint(Ntv.obj(21).expand())
Out[2]: {'name': '', 'type': 'json', 'value': 21}
In [3]: pprint(Ntv.obj({"paris:point": [2.3, 48.9] }).expand())
Out[3]: {'name': 'paris', 'type': 'point', 'value': [2.3, 48.9]}
In [4]: pprint(Ntv.obj({"cities::point": [[2.3, 48.9], [4.8, 45.8] }).expand())
Out[4]: {'name': 'cities',
'type': 'point',
'value': [{'name': '', 'type': 'point', 'value': [2.3, 48.9]},
{'name': '', 'type': 'point', 'value': [4.8, 45.8]}]}
In [5]: pprint(Ntv.obj({"paris:point": [2.3, 48.9], "start:date": "2023-08-03", "measurement": 45.8}).expand())
Out[5]: {'name': '',
'type': '',
'value': [{'name': 'paris', 'type': 'point', 'value': [2.3, 48.9]},
{'name': 'start', 'type': 'date', 'value': '2023-08-03'},
{'name': 'measurement', 'type': 'json', 'value': 45.8}]}
Note: This typing syntax can also be used for CSV file headers
NTV structure
With this approach, two NTV entities are defined:
- a primitive entity which is not composed of any other entity (NTV-single),
- a structured entity which is an ordered sequence of NTV entities (NTV-list).
as well as two JSON formats:
- simple format when the name and the type are not present (e.g.
25
), - named format when the name or type is present ((e.g.
{'age': 25}
or{':int': 25}
)).
The type incorporates a notion of namespace
that can be nested.
For example, the type:
ns1.ns2.type_a
means that:
ns1.
is a namespace defined in the global namespace,ns2.
is a namespace defined in thens1.
namespace.,type_a
is defined in thens2.
namespace.
The type can be extended with additional data.
For example, the type:
float[kg]
means that:
float
is a main type of the data,kg
is an additional type (e.g. an unit),float[kg]
may represent a Quantity.
This structuring of type makes it possible to reference any type of data that has a JSON representation and to consolidate all the shared data structures within the same tree of types.
NTV uses
Several variations and use cases of the NTV format are defined:
- Tabular and multidimensional data exchange format (e.g. open-data)
- Compact, reversible and semantic pandas-JSON interface
- Comment and change management of JSON data
- visualization of JSON or NTV tree
- JSON data editor
- data validation (value conformity to the Datatype)
NTV and JSON
The flowchart below explain how to convert and exchange native entities through NTV and JSON format.
flowchart LR text["#10240;#10240;JSON#10240;#10240;\ntext"] val["#10240;JSON-NTV#10240;\nvalue"] ntv["#10240;#10240;#10240;NTV#10240;#10240;#10240;\nentity"] nat["#10240;native#10240;\nentity"] text--->|JSON load|val val--->|JSON dump|text val--->|NTV from JSON|ntv ntv--->|from NTV|nat ntv--->|NTV to JSON|val nat--->|to NTV|ntv
The conversion between native entity and JSON-text is reversible (lossless round trip).
In [6]: loc_and_date = {'newyear': date(2023, 1, 2), 'Paris': Point(2.3, 48.9)}
json_loc_date = Ntv.obj(loc_and_date).to_obj(encoded=True)
print(json_loc_date, type(json_loc_date))
Out[6]: {"newyear:date": "2023-01-02", "Paris:point": [2.3, 48.9]} <class 'str'>
In [7]: Ntv.obj(json_loc_date).to_obj(format='obj') == loc_and_date
Out[7]: True
Properties :
- each NTV object has a unique JSON representation
- each JSON data corresponds to a unique NTV entity
- an NTV entity is a tree where each node is an NTV entity and each leaf an NTV-Single entity
- an NTV entity is a neutral representation (independent of a software or hardware platform)
package installation
json_ntv package
The json_ntv
package includes
ntv
moduleNtv
abstract classNtvSingle
andNtvList
child classes
namespace
moduleTypeBase
,Datatype
,Namespace
,DatatypeError
classes
ntv_util
moduleNtvConnector
,NtvUtil
,NtvTree
,NtvJsonEncoder
,NtvError
classes
ntv_connector
module (NtvConnector
child classes)SfieldConnec
,SdatasetConnec
,NfieldConnec
,NdatasetConnec
,MermaidConnec
,ShapelyConnec
,CborConnec
classes
ntv_patch
moduleNtvOp
,NtvPatch
,NtvPointer
,NtvOpError
classes
ntv_validate
moduleValidator
,ValidateError
classes
The 'Namespaces' used are defined in the configuration files
Installation
json_ntv itself is a pure Python package. It can be installed with pip
pip install json_ntv
dependency:
- only packages associated to used connectors (e.g.
Mermaid
if we useMermaidConnec
)Examples and Uses
Several variations and use cases of the NTV format are defined:
Overview
This overview presents different facets and covers all the features of this package.
JSON and NTV data editor
This notebook presents with an example the functionality available to access, represent, update and transform JSON (or NTV) data.
Tabular and multidimensional NTV connector
This compact, reversible and semantic converter is defined in a separate package ntv-pandas and ntv-numpy.
Comment and change
TBD
documentation
The documentation presents :
documents
- a general presentation
- the JSON-NTV specification (Json for NTV data)
- an example of namespace
- the NTV-TAB specification (Json for tabular data)
Python Connectors documentation
Roadmap
- NTV schema : use data schema compatible with Json-schema
- multidimensional data : specific Internet-Draft for this format
- indicators : extract structural data
- types : tools to control (NTV_values, NTV_type)
- CBOR interface : using CBOR tags
- types catalog : compatibility with others catalogs
- visualization : add visualization tools (Mermaid extension and other tools)
- NTV editor : HTML/JavaScript to build and understand NTV structure and JSON-NTV format
- JavaScript : add NTV javascript tool
- NTVpath : extension of JSONpath to NTV data